Getting started with BatchReactor®

Use Case 1: simulation of the chlorotoluene chlorination

Software & Services In Process Simulation

Introduction

This document presents the different steps to follow in order to simulate a batch reactor synthesis using BatchReactor software.

This presentation is based on a practical example: the chlorination of the chlorotoluene. This example is available on ProSim web site (www.prosim.net) or in the BatchReactor example directory.

The presentation includes 3 parts:

- Part 1 Example description
- Part 2 General description of the software interface
- Part 3 Description of the different steps to follow in order to run the simulation

Part 1 - Example description

Example description:

- Compounds and thermodynamic model
- Description of the reaction system
- Description of the equipment
- Operating mode

Compounds and thermodynamic model

The following compounds are involved in the simulation:

Name	Formula	CAS Number ^(*)
o-Chlorotoluene	C ₇ H ₇ Cl	95-49-8
Chlorine	Cl ₂	7782-50-5
Benzyl dichloride	C ₇ H ₆ Cl ₂	98-87-3
Hydrogen chloride	HCl	7647-01-0
Benzotrichloride	C ₇ H ₅ Cl ₃	98-07-7
Nitrogen	N ₂	7727-37-9

Compounds and thermodynamic model

The "NRTL" thermodynamic profile is selected, with the binary interaction parameters specified as follows (available parameters would be automatically loaded):

Supplied for the following binaries:

Comp	ounds	Cij0	Cji0	Aij0	CijT	CjiT	ajiT
o-Chlorotoluene	Benzyl dichloride	-707.3	775.31	0.1939	0	0	0
o-Chlorotoluene	Benzotrichloride	-1246	1463.5	0.1584	0	0	0
Benzyl dichloride	Benzotrichloride	64.339	-79.04	0.4097	0	0	0

 Equal to 0 for the other binaries (coming down to considering ideal thermodynamic behaviour)

Description of the reaction system

The reactor is initially composed of liquid chlorotoluene and is fed with vapor chlorine. Two chemical reactions are considered. For each reaction:

- The reaction takes place in the liquid phase
- The reaction heat is calculated from the standard enthalpies of formation
- The reaction is controlled by the kinetic
- The rate constant is calculated by the Arrhenius law:

$$k(T) = k^0 \exp^{\left(\frac{-Ea}{RT}\right)}$$

With:

k^0	Pre-exponential factor	> Provided by	the user
-------	------------------------	---------------	----------

R Ideal gas constant

T Temperature

Description of the reaction system

The main reaction is the following:

$$(C_7H_7Cl)$$
 (Cl_2) $(C_7H_6Cl_2)$ (HCl)

- Model expressed in molar concentrations
- Partial orders of 1 for the reactants and 0 for the products

Compound	Stoichiometry	Order
Chlorine	-1	1
o-Chlorotoluene	-1	1
Benzyl dichloride	1	0
Hydrogen chloride	1	0

Kinetic parameters:

Pre-exponential factor (k ⁰)	2.7203.10 ¹⁷ s ⁻¹ (mol/l) ⁻¹
Activation energy (Ea)	130320 J/mol

Description of the reaction system

A **side reaction** is considered:

Benzyl dichloride + Chlorine → Benzotrichloride + Hydrogen chloride

- Model expressed in molar concentrations
- Partial orders of 1 for the reactants and 0 for the products

Compound	Stoichiometry	Order
Benzyl dichloride	-1	1
Chlorine	-1	1
Benzotrichloride	1	0
Hydrogen chloride	1	0

Kinetic parameters:

Pre-exponential factor (k ⁰)	580 s ⁻¹ (mol/l) ⁻¹
Activation energy (Ea)	42200 J/mol

Two streams feed the reactor: the first is for the reactant and the second is for nitrogen sweeping.

The reactor characteristics are the following:

- **Vessel**: torispherical vessel with a volume of 3m³ and a diameter of 1400 mm
- Mixing device: 3 retreating-blades impeller with a diameter of 700 mm, located at 450 mm from the bottom and rotating at 90 rpm
- Wall heat exchanger: external jacket, 50 mm thick and 1700 mm high
- Wall materials: stainless steel 316 with a thickness of 17 mm

Description of the equipment

- Utility fluid:
 - Hot utility: 200 kg/h of steam at 6 bar
 - Cold utility: 4000 kg/h of water at 25°C
- Thermal inertia: the reactor is made of a material that has a weight of 800 kg and a specific heat of 500 J/kg/K
- Heat losses: negligible

- The reactor is closed and equipped with a two-stages condenser. A vapor output stream is leaving the second stage
- The liquid condensates are collected in the storage tank
- The characteristics of the first condensation stage are the following:
 - Exchange area: 15 m²
 - Global heat exchange coefficient: 300 kcal/h/m²/°C
 - Utility: 3000 kg/h of water at 20°C
- The characteristics of the second condensation stage are the following:
 - Exchange area: 0.5 m²
 - Global heat exchange coefficient: 300 kcal/h/m²/°C
 - Utility: 100 kg/h of a thermal fluid composed of ethylene glycol 40% available at 15°C
- Pressure drop in both stages are neglected

The reactor is initially composed of 2400 kg of chlorotoluene at 25°C and atmospheric pressure.

First step: heating

The reactor is heated, maintaining a total reflux, until 58°C is reached. The reactor inerting is performed using a nitrogen stream with a flowrate of 1 kg/h at 25°C and atmospheric pressure. The reactor pressure is kept at atmospheric pressure.

Operating mode

Second step: reaction

The reactor is fed during 13 hours with 60 kg/h of chlorine at 3 bar and 25°C. The nitrogen sweeping is maintained. The reactor temperature is controlled at a value of 62°C by acting on the cooling water flowrate.

A PID controller is used, with the following parameters:

- Minimum / maximum values: 59°C / 65°C
- Type: feedback
- PID parameters: Gain = -5, Ti = 500 s, Td = 0
- Sample rate: 10 s
- Valve regulation: the valve equation is based on an "exponential" type and the Cv equals 30

Part 2 - General description

General description of the software interface:

- Home page
- Main window
- Toolbar
- Creating a new simulation file
- Selecting the unit system

Home page

Main window

Toolbar

Creating a new simulation file

1- Click on « create a new document »

(optional)

Subject: Keywords: Author: Manager: Company: Category: Comments: OK Cancel

Synopsis

Title:

Choosing the unit system

Click on this icon

iminin =

in order to configure the unit system

1- Select a predefined unit system and click on "Apply system"

2- You can then customize the unit system

3- Click on "OK" to validate

Part 3 - Simulation

Description of the different steps to simulate the example

- Step 1: Select the compounds
- Step 2: Select the thermodynamic model
- Step 3: Describe the chemical reactions
- Step 4: Describe the equipment
- Step 5 : Describe the operating steps
- Step 6: Run the simulation
- Step 7: Analyze the simulation results

© 2023 ProSim S.A. All rights reserved.

Step 1: Select the compounds

1 - Click on the icon "Edit the thermodynamic and the compounds"

For more information about selecting and editing the compounds, please consult "Getting started with Simulis Thermodynamics, use case 1"

Step 1: Select the compounds

Click here to import the compounds from the database

Step 1: Select the compounds

3 - Press "Enter" or click on "Search" to display the list of compounds that match your criteria

1 - Select the compounds server in which you want make the researches (by default, select the most recent one)

© 2023 ProSim S.A. All rights reserved.

Step 1: Select the compounds

1 - Double click on the compound to add it to your final selection

3 - Click on "Close" to end the compounds selection process

Step 2: Select the thermodynamic model

1 - Click on the "Model" tab to access the thermodynamic model editor

The "Binaries" tab appears automatically when you select a model that requires binary interaction parameters

2 - Select the "NRTL" thermodynamic profile

27

Step 2: Select the thermodynamic model

1 - Click on the "Binaries" tab, then enter the binary interaction parameters

Back to the "Calculators editor" window, select "Edit the chemical reactions of this calculator":

1 - Select "Add a reaction"

3 - Double click on the reaction to edit it

1 - Select the "Kinetic" option

oSim S.A. All rights reserved.

Follow the same procedure for the second reaction:

1 - Select the "Kinetic" option

© 2023 ProSim S.A. All rights reserved.

Click on "OK" to validate the calculator and return to the main window:

The "flowsheet" window allows to describe the following features:

- The general topology of the reactor
- The initial conditions inside the reactor
- The equipment characteristics

Flowsheet	Heating	Reaction	
Calculatio	X		
Monor	ohasic (ga	s)	
Open Closed	reactor typ	pe	

44

Step 4: Describe the equipment

Configure the control panel:

- 1 Calculation mode: "Diphasic"
- 2 Reactor type: "Closed"
- 3 With a condenser
- 4 Vessel bottom geometry: "torispherical"
- 5 Mixing device: "3 retreating-blades impeller"
- 6 With a wall heat exchanger:
- External jacket
- Joined

33 ProSim S.A. All rights reserved.

Step 4: Describe the equipment

Configure the feeds:

Configure the feeds:

- 2 Double click on the feeds to rename them:
- "Reactant"
- "Inert"

The feed characteristics will be specified in the operating steps

Double click on the reactor in order to open its configuration window:

© 2023 ProSim S.A. All rights reserved.

Step 4: Describe the equipment

First, specify the initial conditions as well as the alarms:

Initial conditions and alarms:

© 2023 ProSim S.A. All rights reserved.

Step 4: Describe the equipment

• Initial load:

Head space:

Configure the equipment geometry:

Vessel:

• Number of baffles: 4

• Diameter: 1400 mm

• Curve radius #1: 1400 mm

• Curve radius #2: 140 mm

Mixing device:

• Diameter: 700 mm

• Height: 450 mm

External jacket:

• Height: 1700 mm

• Jacket-vessel distance: 50 mm

Wall materials:

• Thickness: 17 mm

• Weight: 800 kg

Vessel bottom geometry:

Mixing device:

Wall heat-exchanger:

Wall materials:

Note: it is possible to save/import equipment characteristics by clicking on the "Technology" button

© 2023 ProSim S.A. All rights reserved.

Step 4: Describe the equipment

Click on the "Validation" tab

Double click on the condenser to access its configuration window

Enter the number of stages: 2
Two condensers in series are then defined

Add the "heating" step:

1 - Click on "Add a step" and then on "Variable heat duty"

2 - Click on the "Scenario" tab. A new step and a new event are created

Connect the steps:

Configure the "heating" step:

Configure the "heating" step:

64

Step 5: Describe the operating steps

Configure the "heating" step:

Specify the properties of the "inert" feed:

• Check the "Feed is open" option

Temperature: 25°C

Pressure: 1 atm

Nitrogen flowrate: 1 kg/h

© 2023 ProSim S.A. All rights reserved.

Step 5: Describe the operating steps

Configure the "heating" step:

1 - Double click on the condenser to open its configuration window

- 2 Check the "condenser is open" box
- 3 Condenser type: calculated
- 4 In use stages: 2

Configure the "heating" step:

Characteristics of the condenser 1st stage:

- Calculation type: at specified area and exchange coefficient
- Exchange coefficient: 300 kcal/h/m²/K
- Exchange area: 15 m²
- Utility fluid:
- o Water
- o Inlet temperature: 20°C
- Mass flowrate: 3000 kg/h

© 2023 ProSim S.A. All rights reserved.

Configure the "heating" step:

Characteristics of the condenser 2nd stage:

- Calculation type: at specified area and exchange coefficient
- Exchange coefficient: 300 kcal/h/m²/K
- Exchange area: 0.5 m²
- Utility fluid:
- Click on "Technology" and import
 - « Ethylene glycol 40% » from the database
- Inlet temperature: -15°C
- Mass flowrate: 100 kg/h

Configure the "heating" step:

The characteristics of the heating device are the following:

- Configure the "heating" step:
- 1 Double click on the reactor icon to access its configuration window
- 2 Enter the operating parameters:
- Reflux ratio (1 for 100% reflux)
- Pressure specification

Configure the "heating" step:

Specify the mixing parameters:

Configure the "heating" step:

Specify the wall heat exchanger parameters:

	✓ The wall heat exchanger is in	n use	Maximum temp	perature difference process/utility	0 K		
			Global exchar	nge coefficient is supplied	0 W/m2/K		
`	Heat exchange coefficient is	Heat exchange coefficient is supplied (PROCESS side)			Heat exchange coefficient is supplied (SERVICE side)		
all heat-exchanger		0 W/m2/K			0 W/m2/K		
iii iieat-excilaligei	Fouling factor	0 W/m2/K	2/K	Fouling factor	0 W/m2/K	-	
1	Utility fluid						
	Fluid type	Saturated steam	~	Mass flowrate	200 kg/h	•	
	Inlet temperature	25 °C		Pressure	6 bar	~	
	Point number	2					
	Point #1			Point #2			
	Reference temperature	25 °C		Reference temperature	25 °C		
	Mass specific heat	0 J/kg/K		Mass specific heat	0 J/kg/K		
	Density	0 kg/m3		Density	0 kg/m3		
	Dynamic viscosity	0 Pa.s		Dynamic viscosity	0 Pa.s		
	Thermal conductivity	0 W/m/K		Thermal conductivity	0 W/m/K		
	Thermal expansion coefficient	0	1/K	Thermal expansion coefficient	0	1/K	

Configure the "heating" step:

Wall materials: import the characteristics of the "Stainless steel 316" from the database:

© 2023 ProSim S.A. All rights reserved.

Step 5: Describe the operating steps

Configure the "heating" step:

Configure the "reaction" step:

Duplicating a step prevents from providing a second time the input parameters that are similar in both steps

Configure the "reaction" step:

Connect the new step to the ending event of the heating step and to the ending event of the simulation

Configure the "reaction" step:

1 - Double click on the new step to access its configuration window

Configure the "reaction" step:

Specify the properties of the "Reactants" feed:

Check the "Feed is open" option

Temperature: 25°C

Pressure: 3 bar

Chlorine flowrate: 60 kg/h

Configure the "reaction" step:

Configure the "reaction" step:

3 - Specify the PID parameters:

Temperature specification:

Set point value: 62°C
 Minimum value: 59°C
 Maximum value: 65°C

Command variable:

Command variable:
 Service fluid flowrate

Minimum value: 1 kg/h

Maximum value: 10 t/h

Configure the "reaction" step:

4 - Click on "PID" in order to specify the following parameters:

Controller:

- Control type: Feedback
- Gain: -5
- T_i: 500 s
- T_d: 0 s
- Sample rate: 10 s

Valve:

- Equation type: exponential
- Cv: 30

Restore

<u>0</u>K

<u>C</u>ancel

Configure the "reaction" step:

Water

Specify the characteristics of the cooling system:

Temperature: 25°C Mass flowrate: 4000 kg/h Wall heat exchanger parameters X 0 K The wall heat exchanger is in use Maximum temperature difference process/utility Global exchange coefficient is supplied 0 W/m2/K Heat exchange coefficient is supplied (PROCESS side) Heat exchange coefficient is supplied (SERVICE side) 0 W/m2/K 0 W/m2/K Fouling factor 0 W/m2/K Fouling factor 0 W/m2/K Utility fluid Fluid type Water Mass flowrate 4000 kg/h Inlet temperature 25 °C 6 bar Pressure Point number Point #1 Point #2 Reference temperature 25 °C Reference temperature 25 °C 0 J/kg/K 0 J/kg/K Mass specific heat Mass specific heat Density 0 kg/m3 Density 0 kg/m3 Wall heat-exchanger 0 Pa.s 0 Pa.s Dynamic viscosity Dynamic viscosity 0 W/m/K 0 W/m/K Thermal conductivity Thermal conductivity 1/K Thermal expansion coefficient Thermal expansion coefficient

Technology

Restore

Reference / Note

2023 ProSim S.A. All rights reserved.

Cancel

Configure the "reaction" step:

It is not necessary to configure the following elements that are identical to the first operating step:

- Mixing parameters
- Wall materials
- Reflux
- Pressure specification
- Condenser characteristics

Configure the "reaction" step:

Step 6: Run the simulation

Step 6: Run the simulation

The following window displays in real time the process operating variables:

Once the simulation is complete, click on "Open the graph report" to analyze the evolution as a function of time of the variable parameters (pressure, temperature, flowrates, compositions, heat duties, physical properties, etc...)

Heat duty - Utilities flowrate

И

鲴

Physical properties

Vapor mass fractions

Click on "Open the report" to open the full simulation report in MS-Word format. It includes the input data (equipment and operating scenario) as well as the numerical and graphical results

The detailed table of content provides a convenient access to the results

Click here to access the simulation report in MS-Excel format. It includes the evolution of the process variables as a function of time

2413	Time (h)	Liquid volume (m3)	Feed flowrate (kg/h)	Liquid sidestream (kg/h)	Vapor sidestream (kg/h)	Vapor distillate (kg/h)	liquid distillate (kg/h)	Reflux (kg/h)
2414	1.67E-04	2.2278891	1	0	0	1.0052927	0	2.00E-02
2415	1.67E-02	2.2286754	1	0	0	1.3371409	0	2.73E-02
2416	3.33E-02	2.230627	1	0	0	1.5397891	0	3.36E-02
2417	5.00E-02	2.2332999	1	0	0	1.6559845	0	3.94E-02
2418	6.67E-02	2.2364167	1	0	0	1.7185781	0	4.53E-02
2419	8.33E-02	2.239802	1	0	0	1.7493801	0	5.13E-02
2420	0.1	2.243351	1	0	0	1.7614792	0	5.76E-02
2421	0.116667	2.2470044	1	0	0	1.7625298	0	6.43E-02
2422	0.133333	2.2507285	1	0	0	1.757826	0	7.16E-02
2423	0.15	2.2544892	1	0	0	1.7492106	0	7.94E-02
2424	0.166667	2.2582715	1	0	0	1.7412496	0	8.80E-02
2425	0.183333	2.2620693	1	0	0	1.7278169	0	9.70E-02
2426	0.2	2.2658796	1	0	0	1.7193188	0	0.10702215
2427	0.216667	2.2697004	1	0	0	1.7098734	0	0.11781666
2428	0.233333	2.2735296	1	0	0	1.7007094	0	0.12949264
2429	0.25	2.2773661	1	0	0	1.6923622	0	0.14214939
2430	0.266667	2.2812092	1	0	0	1.6844712	0	0.15582606
2431	0.283333	2.2850585	1	0	0	1.6773023	0	0.17061809
2432	0.3	2.2889139	1	0	0	1.6706803	0	0.18658742
2433	0.316667	2.2927754	1	0	0	1.6645653	0	0.20381152

Multiple different files are created in the folder where the simulation file is stored, in particular:

- The simulation file (*.pbpr)
- The simulation report in MS-Word format (*.docx)
- The simulation report in MS-Excel format (*.csv)

Nom	Modifié le	Туре	Taille
BATCHREA_EX_EN-Chlorination-reactor_files	03/08/2022 18:26	Dossier de fichiers	
BATCHREA_EX_EN-Chlorination-reactor.csv	03/08/2022 18:26	Fichier CSV Micro	1 144 Ko
BATCHREA_EX_EN-Chlorination-reactor.docx	03/08/2022 18:26	Document Micros	778 Ko
BATCHREA_EX_EN-Chlorination-reactor.don	03/08/2022 18:24	Fichier DON	6 Ko
BATCHREA_EX_EN-Chlorination-reactor.his	03/08/2022 18:26	Document texte	33 Ko
BATCHREA_EX_EN-Chlorination-reactor.log	03/08/2022 18:26	Document texte	1 Ko
BATCHREA_EX_EN-Chlorination-reactor.pbpr	03/08/2022 18:23	Fichier PBPR	6 513 Kd
BATCHREA_EX_EN-Chlorination-reactor.res	03/08/2022 18:26	Compiled Resourc	1 255 Ko
BATCHREA_EX_EN-Chlorination-reactor.xyg	03/08/2022 18:26	Fichier XYG	1 155 Ko

For any questions, please contact ProSim technical support by sending an email to support@prosim.net, with:

- The objectives of your simulation
- Your simulation file

To facilitate the sending of the simulation file by email, a zip file can be automatically generated by clicking on "send to support"

ProSim SA

51, rue Ampère Immeuble Stratège A F-31670 Labège France

2: +33 (0) 5 62 88 24 30

www.prosim.net info@prosim.net

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

2: +1 215 600 3759